On considère 1,0 t = 1,0 103 kg = 1,0 106
g de résidus contenant uniquement de la silice SiO2 et du
carbone.
On donne les amsses atomiques molaire ( g/mol) : Si : 28,1 ; O
: 16,0 ; C : 12,0.
Hypothèse n°1 : la masse de carbone est égale à celle
de silice ( m = 5,0 105 g)
Masse molaire de la silice MSiO2 = 28,1+2*16,0 =
60,1 g/mol
Quantité de matière de silice : nSi = m / MSiO2
=5,0 105 / 60,1 =8,3 103
mol.
Quantité de matière de carbone : nC = m / MC
=5,0 105 / 12,0 =4,2 104
mol.
Hypothèse n°2 : la quantité de matière ( en mol ) de
carbone est égale à celle de silice ( on note n cette quantité de
matière)
Masse de silice (g) = quantité de matière (mol) * masse
molaire de la silice ( g/mol)
mC = n MC =12,0 n
Masse de carbone (g) = quantité de matière de carbone (mol)
fois masse molaire du carbone ( g/mol)
|
Masse de silice + masse de carbone = 1,0 106
g.
60,1 n + 12,0 n = 1,0 106
72,1 n = 1,0 106 ; n = 1,387 104
mol.
Masse de silice (g) =1,387 104 *60,1 =8,3 105
g = 0,83 t.
Masse de carbone (g) =1,387 104 *12 =1,7 105
g = 0,17 t.
|
1,0 t de ces résidus brulent dans un four ; la silice
reste intact mais le carbone conduit au dioxyde de carbone ( gaz).
La masse finale du résidu étant 130 kg, la masse initiale de
silice était 130 kg et la masse initiale de carbone était m = 1000-130
= 870 kg = 8,7 105 g.
Combustion
du sodium dans le dioxygène.
4Na(s) + O2(g) = 2Na2O(s).
Une masse m = 2,31 g de sodium brûle dans n = 0,10 mol de
dioxygène.
Tableau d'évolution du système.
Quantité de matière initiale de sodium ( M = 23,1 g/mol) : nNa
= m/MNa = 2,31 / 23,1 = 0,10 mol
|
avancement (mol)
|
4Na(s)
|
+ O2(g)
|
= 2Na2O(s)
|
initial
|
0
|
0,10
|
0,10
|
0
|
en cours
|
x
|
0,10-4x
|
0,10-4 x
|
2x
|
fin
|
xmax
|
0,10-4xmax
|
0,10-xmax
|
2xmax
|
Hypothèse n°1 : le sodium est en défaut : 0,10-4xmax
; xmax = 0,10/4 =0,0250 mol
Hypothèse n°2 : le dioxygène est en défaut : 0,10-xmax
; xmax = 0,10 mol
On retient la plus petite valeur xmax = 0,025 mol
Composition finale ( mol) du système.
|
avancement (mol)
|
4Na(s)
|
+ O2(g)
|
= 2Na2O(s)
|
fin
|
xmax
|
0,10-4xmax
|
0,10-2xmax
|
2xmax
|
0,10
|
0
|
0,10-0,05 = 0,050
|
0,05
|
Masse d'oxyde de sodium :
MNa2O = 23,1*2+16 =62,2 g/mol
m = nNa2O MNa2O =0,05 *62,2 =3,1 g.
Conversion
de concentrations.
Exprimer
en mmol /dm3 ( mmol /L) les
concentrations suivantes :
On donne les masses atomiques molaires C : 12 ; H : 1 ; O = 16
; N : 14 ; Na : 23 ; Cl : 35,5g/mol
5 mg mL-1 ; glucose C6H12O6.
Masse molaire du glucose : M = 12*6 + 12 + 6*16 = 180 g/mol
Quantité de matière n = m / M
; ici 5 mg dans 1 mL correspond à m = 5 g dans 1 L.
n = 5 /180 = 0,0278 mol.
Concentration C = n /V
avec ici V = 1 L : C = 0,0278 mol/L =27,8 mmol/L.
29 kg m-3 ; urée N2H4CO.
Masse molaire de l'urée : M = 14*2+ 4+12 + 16 = 60 g/mol
Quantité de matière n = m / M
; ici 29 kg dans 1000 L correspond à m = 29 g dans 1 L.
n =29 /60 = 0,0278 mol.
Concentration C = n /V
avec ici V = 1 L : C = 0,483 mol/L =483 mmol/L.
9 g dm-3 ; chlorure de sodium NaCl.
Masse molaire de NaCl : M = 23+35,5= 58,5 g/mol
Quantité de matière n = m / M
; ici 9 g dans 1 L.
n =9 /58,5 = 0,154 mol.
Concentration C = n /V
avec ici V = 1 L : C = 0,154 mol/L =154 mmol/L.
60 µg µL-1 ; albumine 69000 g/mol.
Masse molaire de l'albumine : M = 69 000 g/mol
Quantité de matière n = m / M
; ici 60 µg dans 1 µ L correspond à m = 60 g dans 1 L.
n =60 /69000 =8,70 10-4 mol.
Concentration C = n /V
avec ici V = 1 L : C = 8,70 10-4 mol/L =0,870 mmol/L.
|
Préparation d'une solution étalon de chlorure de sodium.
Dissoudre 1,170 g de somide pur ( naCl) dans 500 mL d'eau distillée en utilisant une fiole jaugée.
Concentration massique du chlorure de sodium ( soluté) :
t = m / V avec ici V = 0,500 L
t = 1,171/0,500 =2,34 g /L.
Concentration molaire du chlorure de sodium ( soluté) :
masse molaire NaCl : M = 23+35,5 = 58,5 g/mol
Quantité de matière n = m / M avec m = 2,34 g dans 1 L.
n = 2,34/58,5 =4,00 10-2 mol dans 1 L
C = n/V = 4,00 10-2 mol /L.
Quelle
masse de chlorure de sodium pur et anhydre faut-il peser pour
préparer 200 mL de solution telle que la concentration en ion
sodium soit 50,0 mmol/L ?
Quantité de matière n = CV avec C = 50 mmol/L = 0,0500 mol/L et V = 0,200 L.
n = 0,0500*0,200 =0,0100 mol
masse m = n M avec M = 58,5 g/mol
m = 0,01000*58,5 = 0,585 g.
Etalonnage indirect d'une solution d'acide sulfurique.
Il faut verser Vb =15,20 mL d'une solution d'hydroxyde de sodium ( NaOH) de concentration molaire Cb = 0,1480 mol/L pour neutraliser V=10 mL d'une solution d'acide sulfurique H2SO4 de concentration inconnue C.
Calculer C.
Quantité de matière d'hydroxyde de sodium : n = CbVb =0,1480*15,20 10-3 =2,2496 10-3 mol
Quantité de matière d'acide : CV = C*0,010 = 0,010 C mol.
Equation de la réaction :
H2SO4 + 2 NaOH = Na2SO4 +2H2O.
Une mole d'acide réagit avec deux mol d'hydroxyde de sodium.
0,01 C mol d'acide réagit avec 2*0,01 C = 0,02 mol d'hydroxyde de sodium :
0,02 C = 2,2496 10-3 ; C = 2,2496 10-3 / 0,02 =0,1125 ~ 0,11 mol/L.
|