|
Relativité
restreinte.
Tom et Léia sont deux faux jumeaux. Tom quitte la terre le jour de ses
30 ans et voyage dans une fusée supposée ponctuelle se déplaçant à la
vitesse v = 0,8 c. Il se dirige vers Sirius qui se situe à environ 9,0
a.l de la terre.
On néglige la phase d'accélération et de décélération de la fusée.
1 a.l ~ 1,0 1016 m ; c = 3,0 108
m/s ; 1 an ~3,0
107 s.
Coefficient de Lorentz g
= 1
/ (1-(v/c)2)½. Aide au
calcul : 8/3 ~2,5
A) Tom observe un pendule dont il mesure la période d'oscillation égale
à 2,4 s. Un observateur terrestre mesurerait une période de 1,4 s. Vrai.
Le temps
s'écoule plus lentement dans la fusée d'après un observateur terrestre.
g = 1 / (1-0,82)½
=1 / 0,6 ; puis 2,4 *0,6 ~ 1,4 s.
B) Pour Léia le voyage de son jumeau
dure 4,0 108
s. Faux.
Distance
parcourue par
Tom : 18 1016 m ;
durée du
voyage pour un
observateur terrestre : 18
1016
/(0,8*3,0 108) =7,5 108 s.
Durée du
voyage (
temps propre ) pour Tom : 0,6 *7,5 108
=4,5 108 s~ 4,0 108
s.
C)
Pour Tom la durée du voyage est de 4,0 108
s. Vrai.
D) Tom aura 38 ans
lorsqu'il
atteindra Sirius. Vrai.
Distance
parcourue par Tom : 9 1016 m ;
durée du voyage ( temps propre ) pour Tom : 2,25
108
s ou 2,25
108
/ (3 107) =7,5 ans ~ 8 ans.
E) Léia aura 38 ans lorsque Tom
atteindra
Sirius. Faux.
7,5
/ 0,6
=12,5 ans, puis 30 + 12,5 = 42,5 ans.
Voyage spatial.
Une navette parcourt les 1300 années-lumière qui séparent la nébuleuse
d'Orion et le Soleil. Cette distance est mesurée dans le référentiel
héliocentrique. L'horloge de la navette indique que ce voyage a duré DtN=800 ans. Le
référentiel héliocentrique et celui de la navette sont galiléens. On
appelle DtH la
durée du voyage dans le référentiel héliocentrique. Un contrôleur
spatial dans le système solaire observe que le voyage dure 900 ans.
Les durées propres Dt0,
dans le référentiel Rp, et mesurées Dt, dans le référentiel R, sont
reliées par la relation :
Dt = g.Dt0 où g = 1/(1-v2/c2)½,
v représente la vitesse de Rp par rapport à R et c
représente la célérité de la lumière.
Données :
c = 3,00 x 108 m.s-1 ; 17½/9 = 0,46.
a) Le référentiel de la navette est en translation rectiligne uniforme
par rapport au référentiel héliocentrique. Vrai.
b) DtN est une
durée mesurée. Vrai.
Durée mesurée par
l'horloge de la navette.
c) On peut écrire DtH=
g.DtN. Vrai.
d) La vitesse de la navette dans le référentiel
héliocentrique est v ~ 0,46 c. Vrai.
g =900
/ 800 = 9 / 8 ; 1/(1-v2/c2) =
81 / 64 ; 1-v2/c2 = 64 / 81 ; v2/c2 =1-64/81 = 17/81 ;
v / c = 0,46 ; v = 0,46 c.
|
.
|
rayons cosmiques relativiste. On
peut appliquer avec une bonne approximation les lois de la mécanique
classique à toute particule animée d'une vitesse inférieure à 10 % de
la célérité de la lumière dans le vide, et utiliser l'expression de
l'énergie cinétique Ec = ½mv2. Lorsqu'on est dans
cette situation, la particule est dite classique. Dans le cas
contraire, la particule est dite relativiste. Par exemple, les protons
les plus énergétiques des rayons cosmiques sont relativistes. Ils sont
d'origine extrasolaire et leur énergie cinétique est typiquement
comprise entre 100 MeV et 10 GeV. Calculer
en joule puis en MeV, l'énergie cinétique d'un proton animé d'une
vitesse égale à 10 % de la célériité de la lumière dans le vide .
Cas d'un proton "classique" : ½mp(0,1 c)2 = 0,5 * 1,673 10-27 (3,00 107)2 =7,53 10-13 J. 7,53 10-13 /( 1,602 10-13) =4,70 MeV. Justifier par un argument quantitatif la phrase " les protons les plus énergétiques des rayons cosmiques sont relativistes".
L'énergie
cinétique maximale des protons "classiques" est inférieure à 4,7 MeV.
Des protons d'énergie cinétique supérieure à 4,7 MeV sont donc
relativistes.
D'après
la théorie de la dualité onde-corpuscule, que l'on doit au scientifique
Louis de Broglie, on associe une onde électromagnétique au proton..
Calculer la valeur de la quantité de mouvement p d'un proton dont la vitesse vaut 0,1 c. p = mp 0,1 c = 1,673 10-27 *3,00 107 =5,02 10-20 kg m s-1. En déduire la valeur de la longueur d'onde associée. l = h / p =6,62 10-34 / (5,019 10-20) =1,32 10-14 m.
|
|